
Résolution exacte de problèmes NP-difficiles
Lecture 2: Kernelization

14 January, 2021 Lecturer: Eunjung Kim

1 Kernelization 101
A kernelization of P is a polynomial-time (in |x| and k) algorithm which transforms an instance
(x, k) of P into another instance (x′, k′) of P satisfying

• equivalence: (x, k) ∈ P if and only if (x′, k′) ∈ P
• size bound: |x| ≤ g(k) and k′ ≤ g(k) for some computable function

An instance (x′, k′) obtained after applying kernelization is called a kernel. The function g(k) is
the size of a kernel.

Usually, a kernelization consists in applying a sequence of reduction rules. A reduction rule
for P is a polynomial-time (in |x| and k) algorithm which transforms an instance (x, k) of P into
an equivalent instance (x′, k′) of P . The equivalence of (x, k) and (x′, k′) is also referred to as
the soundness or safeness of the reduction rule. Notice that the size of the resulting instance is
not necessarily bounded. We say that an instance (x, k) is irreducible with respect to a reduction
rule R is R cannot be applied to (x, k) anymore (or equivalently, applying R does not change the
instance).

Lemma 1. A decidable parameterized problem P is FPT if and only if it admits a kernelization.

Proof: (⇐) If P admits a kernel of size g(k), then run the kernelization algorithm (takes polyno-
mial time in |x| + k) and then do an exhaustive search on the obtained kernel to decide whether
(x′, k′) ∈ P . The whole procedure is an FPT-algorithm.
(⇒) Let P has an FPT-algorithmA running in time f(k) · |x|c for some constant c. Then runA on
the given instance (x, k) for time |x|c+1. If it ouputs YES/NO answer, then produce a constant-size
instance of P accordingly. This would be the kernel. If A does not terminate in time |x|c+1, this
means |x| < f(k). That is, the given instance (x, k) is already a kernel, and thus output (x, k).

Devising a kernelization with small size bound g(k) (usually, polynomial g) is one of the most
active research topic in parameterized complexity. Kernelization design involve the following
steps.

• Devise reduction rules.

• Prove that the above reduction rules are safe.

• Prove that when an instance (x′, k′) of P is irreducible w.r.t the reduction rules, |x′| ≤ g(k)
and k′ ≤ g(k). The smaller the function g is, the better. Notice that the equivalence of
kernelization is automatically guaranteed by the safeness of reduction rules.

1

2 Simple kernelization for VERTEX COVER

We look at a simple kernelization for VERTEX COVER yielding O(k2) vertices.
Reduction Rule 1: If a vertex v is isolated in G, then delete v. The new parameter is k′ := k.
Reduction Rule 2: If a vertex v is incident with at least k + 1 edges in G, then delete v and set
k′ := k − 1.

It is trivial to see that Reduction Rule 1 is safe. To see that Reduction Rule 2 is safe, notice
that any vertex cover of size at most k in G must contain v. Hence, if (G, k) is a yes-instance,
(G− v, k − 1) is also yes-instance. The opposite direction of equivalence is straightforward.

Consider an instance (G′, k′) for which none of Reduction Rules 1 and 2 can be applied, and
analyze the size of G′. Since the parameter does not increase with the reduction rules, we know
that k′ ≤ k.

Suppose G′ is a yes-instance, and C is a vertex cover of G′ with |C| ≤ k. Since (G′, k′) is
irreducible with respect to Reduction Rule 2, every v ∈ C is incident with at most k edges of G.
Therefore, there are at most |C| · k ≤ k2 edges in G. Due to Reduction Rule 1, there’s no isolated
vertex in G′ and thus every vertex in V (G) \ C is adjacent with some vertex in C. As deg(v) ∈ k
for all v ∈ C, we have |V (G)| = |V (G)) \ C|+ |C| ≤ |C| · k + k = k(k + 1).

Hence, if |V (G′)| > k(k + 1) or |E(G′)| > k2, we know that (G′, k′) is a no-instance and
output a constant-size no-instance as a kernel. Otherwise, (G′, k′) is a kernel.

3 LP-based kernelization for VERTEX COVER

Theorem 1 (Nemhauser-Trotter Theorem, NT Theorem in short). Given a graph G, a partition
(R,H,C) satisfying the following can be computed in polynomial time.

(a.) For any vertex cover Sr of G[R], Sr ∪H is a vertex cover of G.

(b.) There exists an optimal vertex cover containing H .

(c.) Any vertex cover of G[R] is of size at least 1
2
|R|.

Before presenting an algorithm for computing such a partition (R,H,C), let’s think how to use
the above NT Theorem for computing a kernel. We propose the following reduction rules.

Reduction Rule 0: Remove isolated vertices from G.

Reduction Rule 1: Let (R,H,C) be a partition such that (a)-(c) of NT Theorem is met and H ∪
C 6= ∅. Then delete H ∪ C from G and set k′ := k − |H|, i.e. the new instance is
(G[R], k − |H|).

Lemma 2. Reduction Rule 1 is safe.

Proof: Suppose (G, k) is a yes-instance and let S be an optimal vertex cover. Notice that |S| ≤ k.
By condition (b) of NT Theorem, we can assume that H ⊆ S. Take Sr := S ∩ R and observe

2

that Sr is a vertex cover of G[R]. Due to condition (a), Sr ∪ H is a vertex cover of G. Since
Sr ∪ H ⊆ S and is a vertex cover of G, the optimality of S implies that S ∩ C = ∅. Hence,
|Sr| = |S| − |H| ≤ k − |H| and (G[R], k − |H|) is a yes-instance.

For the opposite direction, suppose (G[R], k − |H|) is a yes-instance and let Sr be a vertex
cover of G[R] of size at most k − |H|. By condition (a), Sr ∪H is a vertex cover of G and its size
is at most k. That is, (G, k) is a yes-instance.

Lemma 3. VERTEX COVER admits a kernel containing at most 2k vertices.

Proof: Consider the following algorithm: find a partition (R,H,C) as in NT Theorem in poly-
nomial time and apply Reduction Rule 1. (Reduction Rule 0 has been already applied). Let
(G′, k′) = (G[R], k − |H|) be the resulting instance.

• If |R| > 2k, then any vertex cover of G′ contains more than k vertices by condition (c)
of NT Theorem, and thus (G′, k′) is a no-instance. In this case, we output a constant-size
no-instance.

• Otherwise |R| ≤ 2k. We output (G′, k′).

In both cases, we output an instance equivalent to the initial instance containing at most 2k vertices.
The running time follows from NT Theorem.

How can we find a partition (R,H,C) as in NT Theorem? Now we consider this question,
which leads to a proof of NT Theorem. There are several nice proofs of NT Theorem. Here
we consider a version using Linear Programming formulation. Consider a Linear Programming
Relaxation of VERTEX COVER .

min
∑

u∈V (G)

xu

xu + xv ≥ 1 ∀(u, v) ∈ E(G)

xu ≥ 0 ∀u ∈ V (G)

Observe that if an optimal solution to the above LP is integral, then it corresponds to an optimal
vertex cover. In general, an optimal solution x∗ to LP is not necessarily integral. We partition V (G)
according to their values in x∗.

• R0 := {u ∈ V (G) : x∗u = 0.5}
• H0 := {u ∈ V (G) : x∗u > 0, 5}
• C0 := {u ∈ V (G) : x∗u < 0, 5}

It is known that LP can be solved in polynomial time, hence the partition (R0, H0, C0) can be
found in polynomial time. We claim that this partition actually meets the condition (a)-(c) of NT
Theorem. For this, we need the following lemma.

Lemma 4. For every subset H ′0 ⊆ H0, we have |H ′0| ≤ |N(H ′0) ∩ C0|.

3

Proof: Take ε = min{x∗u − 0.5 : u ∈ H ′0} and note that ε > 0. Consider a solution x′ defined as:

x′u =

x∗u − ε if u ∈ H ′0
x∗u + ε if u ∈ N(H ′0) ∩ C0

x∗u otherwise

It is easy to verify that x′ is a feasible LP solution. The objective value of x′ equals∑
u∈V (G)

x∗u + ε(−|H ′0|+ |N(H ′0) ∩ C0)|).

From the optimality of x∗, our claim follows.

Lemma 5. The partition (R0, H0, C0) meets the condition (a).

Proof: Observe that C0 is an independent set: indeed if there is an edge between u, v ∈ C0, we
have x∗u + x∗v < 0.5 + 0.5 = 1, violating the corresponding inequality in LP. For the same reason,
there is no edge between C0 and R0. This means that N(C0) ⊆ H0, from which condition (a)
holds.

Lemma 6. The partition (R0, H0, C0) meets the condition (b).

Proof: Let S be an optimal vertex cover of G and let Sr, Sh, Sc be its intersections with R0, H0

and C0 respectively, and let S̄h be the complement of Sh in H0, that is, S̄h := H0 \ Sh. We take a
new set

S ′ := (S \ Sc) ∪ S̄h,

i.e. the set obtained from S by removing all of C0 and adding all of H0. This is a vertex cover due
to Lemma 5. We claim that S ′ is again an optimal vertex cover. To see this, it suffices to show that
the vertices newly added are not more than those removed, that is, |S̄h| ≤ |Sc|.

Observe that N(S̄h) ∩ C0 ⊆ Sc since otherwise Sc fails to cover all edges incident with S̄h.
Applying Lemma 4 for H ′0 := S̄h, we have

|S̄h| ≤ |N(S̄h) ∩ C0| ≤ |Sc|.

Lemma 7. The partition (R0, H0, C0) meets the condition (c).

Proof: By Hall’s theorem1 and Lemma 4, there is a matching M between H0 and C0 saturating
H0. Let us fix such a matching M and notice that |M | = |H0|. For any feasible solution x′ to the
above LP, its objective value is∑

u∈V (G)

x′u ≥
∑
u∈R0

x′u +
∑

u∈H0∪C0

x′u ≥
∑
u∈R0

0.5 +
∑

u∈V (M)

x′u

=
1

2
|R0|+

∑
(u,v)∈M

(x′u + x′v) ≥
1

2
|R0|+ |M | =

1

2
|R0|+ |H0|. (?)

1Hall’s theorem: Let G be a bipartite graph with vertex bipartition (X,Y). There is a matching M saturating X
(i.e. every vertex of X is incident with an edge in M) if and only if |X ′| ≤ |N(X ′)| for every X ′ ⊆ X .

4

Let Sr be an arbitrary vertex cover of G[R0]. Since (R0, H0, C0) meets condition (a) due to
Lemma 5, Sr ∪H0 is a vertex cover. Since an optimal LP solution x∗ provides a lower bound for
Sr ∪H0, we have

|Sr|+ |H0| ≥
∑

v∈V (G)

x∗v ≥
1

2
|R0|+ |H0|,

where the second inequality follows from the previous inequality (?). This complete the proof.

5

